Lin Model

Logs : Content#Fitting the Lin model

General expression of the Lin model

r=r0{cosθ2+msin(2θ)[1exp(θ)]}β+Q

where

β=β0+β1cosφ+β2sinφ+β3(sinφ)2,Q=cnexp(dnψnen)+csexp(dsψses),ψn=arccos[cosθcosθn+sinθsinθncos(φφn)],ψs=arccos[cosθcosθs+sinθsinθscos(φφs)].

azimuth angle (φ): the angle between the projection of r in the Y‐Z plane and the direction of the positive Y axis from 0 and 2p in clockwise looking from the Earth to the Sun

Coordinate transformations:

x=cosθy=rsinθcosϕz=rsinθsinϕ

Pasted image 20250310160137.png

Parametrized model

After the fitting processes above, all coefficients for equation (19) are finally determined and listed in Table 9. On the basis of the above fittings, a new three‐dimensional asymmetric magnetopause model has finally been constructed and parameterized by the solar wind dynamic and magnetic pressures (Pd + Pm), the interplanetary magnetic field (IMF) Bz, and the corrected dipole tilt angle ()
[[Lin model.pdf#page=8&annotation=193R]]

The paper parametrizes the #General expression of the Lin model with (Pd, Pm, Bz, Dφ) - pressure magnetic field and tilt. The final surface r(Pd, Pm, Bz, Dφ) should be described by these 4 parameters and given by equation:

r=r0f(θ,φ,ϕ)+cnexp(dnψnen)+csexp(dsψses),

where

r0=a0(Pd+Pm)a1[1+a2exp(a3Bz)1exp(a4Bz)+1],f(θ,φ,ϕ)={cosθ2+a5sin(2θ)}β0+β1cosφ+β2sinφ+β3(sinφ)2[1exp(θ)],β0=a6+a7exp(a8Bz)1exp(a9Bz)+1,β1=a10, β2=a11+a12ϕ, β3=a13,cn=cs=a14(Pd+Pm)a15,dn=a16+a17ϕ+a18ϕ2,ds=a16a17ϕ+a18ϕ2,ψn=arccos[cosθcosθn+sinθsinθncos(φπ2)],ψs=arccos[cosθcosθs+sinθsinθscos(φ3π2)],θn=a19+a20ϕ, θs=a19a20ϕ, en=es=a21.

And the corresponding final coefficient values after fitting for the in situ observations:

CoefficientValuea012.544a10.194a20.305a30.0573a42.178a50.0571a60.999a716.473a80.00152a90.382a100.0431a110.00763a120.210a130.0405a144.430a150.636a162.600a170.832a185.328a191.103a200.907a211.450σ(r)1.033

CMEM model

In the CMEM slides they have used some extra parameters to describe the cusps:

r=p0r0[cos(θ2)+msin(2θ)(1exp(θ))]p1β+p2Q

In this way we can fit the p0,p1,p2 parameters to better describe the simulation's magnetopause.